PRELIMINARY PHASE TWO ESA & EXCESS SOILS ASSESSMENT

179 Mellanby Ave. & 56 Main St. West, Port Colborne

Project Location:

179 Mellanby Ave, 56 Main St. W. Port Colborne, ON L3K 3T9

Prepared For:

ePrime Construction Management 14 Wilfrid Laurier Cres. St. Catharines, ON L2P 0A1

Prepared By:

Niagara Soils Solutions Ltd. 3300 Merrittville Highway, Unit 5 Thorold, ON L2V 4Y6

> Date: November 8th, 2022 NSSL File No.: NS2290-02

TABLE OF CONTENTS

1.0	INTRODUCTION & SCOPE OF WORK
2.0	INVESTIGATION METHODOLOGY
2.1	Applicable Site Condition Standard
	.1.1 O. Reg 153/04
	.1.2 O. Reg 406/19
2.2	SOIL SAMPLING
2.3	QUALITY ASSURANCE AND QUALITY CONTROL MEASURES4
2.4	SOIL STRATIGRAPHY4
2.5	SOIL ANALYSES4
3.0	CONCLUSIONS

FIGURES

- 1. Site Location Map
- 2. Site Layout and Features
- 3. Potentially Contaminating Activities
- 4. Areas of Potential Environmental Concern
- 5. Sample Locations
- 6. Soil Results
- 7. Excess Soil Results

APPENDICES

- A. Field Logs
- B. Certificates of Analysis

1.0 INTRODUCTION & SCOPE OF WORK

Niagara Soils Solutions Ltd. [NSSL] was retained by ePrime Construction Management to complete a preliminary Phase Two Environmental Site Assessment of the properties located at 179 Mellanby Avenue and 56 Main Street West in the City of Port Colborne, Ontario. The environmental investigation was recommended following the completion of NSSL's recent Phase One ESA report [October 2022] that documented the presence of fill material across the two properties and a historic paint shop within the southeastern part of the 179 Mellanby lot, and an underground storage tank [UST] noted within the roadway along the western property line. The preliminary Phase Two ESA was completed in general accordance with the requirements of O. Reg 153/04 as amended. The scope of work completed was as follows:

- Underground utility service locates were completed using Ontario One Call and private locating service.
- The preliminary Phase Two ESA work and excess soils assessment was completed in conjunction with a concurrent geotechnical investigation completed by Niagara Testing and Inspection Ltd.
- Five [5] boreholes were drilled across the study site within the three [3] APEC areas [fill material, paint shop and UST]. One [1] borehole was completed via hand auguring/shovel.
- All test locations were analysed for the presence of fill material with soil samples from each location submitted for potential contaminants of concern.
- One [1] soil sample from each testing location was also evaluated for compliance against O. Reg 406/19 On-site and Excess Soil Management to provide initial insight regarding disposal of excess soil that may be generated for site re-development.
- Bedrock was encountered within BH1 BH5 at approximately 0.5 0.7 m below ground surface [bgs].
- Six [6] select soil samples were submitted to AGAT Labs Ltd. for analysis of pH, Petroleum Hydrocarbons [PHCs] F1-F4, Benzene, Toluene, Ethylbenzene, and Xylene [BTEX] and Metals.
- Groundwater was not investigated at this time.

2.0 INVESTIGATION METHODOLOGY

2.1 Applicable Site Condition Standard

2.1.1 O. Reg 153/04

Under O. Reg. 153/04 as amended, the Ministry of the Environment, Conservation and Parks [MECP] has outlined Site Condition Standards [SCS] in the document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011. The SCS applicable to the preliminary Phase Two ESA property has been evaluated based upon the following rationale:

Property Use	Mixed commercial & residential
Grain Size	As per on-site field notes and indicated on the borehole logs the grain size was
	determined to be coarse textured soils.
Water Wells	Domestic water wells were not identified within 250 metres [m] of the Phase
	Two Property. Redevelopment of the site will be serviced by municipal water.
Within 30 m of a Waterbody	In accordance with O. Reg. 153/04, the lot does not include land that is within
	30 m of a waterbody.
Depth to Bedrock	Based on the borehole results, there is less than 2 m of soil between ground
	surface and the top of the bedrock surface at the site.
рН	Soil pH values were reported between 7.07 and 7.36 [Total Average of 7.21]
	in the native soil samples.
Environmentally Sensitive Area	The Phase Two Property has not been identified to be within an
	environmentally sensitive area.
Area of Natural Significance	The Phase Two Property is not classified as an environmentally sensitive area
	under O. Reg. 153/04 as amended, as the Phase Two Property does not include
	land, or is within 30 m of land, that would be classified as an area of natural
	significance as defined by O. Reg. 153/04 as amended.

Therefore Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional [R/P/I] property use, coarse-textured soils were applied to the study site.

2.1.2 O. Reg 406/19

Table 7.1 Full Depth Excess Soil Quality Standards for Shallow Soils in a Non-Potable Ground Water Condition were utilized when considering the need to dispose of any excess soil generated during site redevelopment.

2.2 Soil Sampling

Seven [7] samples were collected from boreholes, BH1 to BH6, with six [6] "worst-case" samples submitted for analysis. Recovered soil samples were immediately logged for a description of soil type, moisture content, colour, texture, and visual evidence of impacts. Samples to be subjected to laboratory analyses were immediately placed into laboratory-supplied sample jars and stored in a cooler with ice.

Soil samples intended for Volatile Organic Compounds [VOC] and F1 fractions of Petroleum Hydrocarbon analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes, and sealed using Teflon lined septa lids. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontracting laboratory, AGAT Laboratories Ltd. [AGAT] in Stoney Creek, Ontario. The samples were transported and submitted to AGAT following Chain of Custody [COC] protocols for chemical analyses.

The soil sample analyses were completed by AGAT., located at 903 Barton Street, Stoney Creek, ON. AGAT is accredited by the Canadian Association for Laboratory Accreditation [CALA] in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analyzed during this investigation.

2.3 Quality Assurance and Quality Control Measures

All soil samples submitted as part of this Preliminary Phase Two ESA investigation were handled in accordance with laboratory analytical protocols in regard to holding time, preservation method, storage requirements, and container type. A Certificate of Analysis has been received for each sample submitted for analysis, and all Certificates of Analysis are appended to this report. The quality of the field data collected during this Preliminary Phase Two ESA are considered to be sufficient to meet the overall objective of this study. All activities completed as part of this Preliminary Phase Two ESA were conducted as per applicable regulatory requirements.

2.4 Soil Stratigraphy

Drilling field logs, as completed by NTIL are provided in Appendix A. Stratigraphy was generally described as a thin veneer of topsoil and gravel fill overlying a 'reworked' sandy silt to auger refusal at depths of about 0.5 to 0.7 m over Bedrock [Limestone] to borehole termination depth 4.1 metres below ground surface.

2.5 Soil Analyses

Soil sampling was completed on October 19th, 2022. Select samples were submitted to AGAT Laboratories Ltd. for analysis of pH, Petroleum Hydrocarbons [PHCs] F1-F4, Benzene, Toluene, Ethylbenzene, and Xylene [BTEX] and Metals. Reported results against O. Reg 153/04 and O. Reg 406/19 are summarized below with full laboratory reports provided in Appendix B.

O. Reg 153/04

When the soil test results were compared to Ontario Regulation 153/04 Table 7 for residential land use purposes all six samples exceeded for Metals, specifically either the Lead or Nickel parameters as shown below. All other parameters met the applicable criteria.

Sample Description	G / S Table 7 R/P/I	BH1	BH2	внз	BH4	BH5	вн6
Lead	120 ug/g	88	64	196	294	166	222
Nickel	100 ug/g	279	135	338	469	351	541

R/P/I = residential/parkland/institutional

O. Reg 406/19

Six [6] samples from across the study lots were considered to be representative of the varying depths of excess soil material that could be removed from the site during site redevelopment. As the exact volume of soil material generated is currently unknown, additional samples may be required to comply with applicable regulations. Additionally, leachate analysis was not conducted on the soil samples at this time.

When the soil test results were compared to Ontario Regulation 406/19 Table 7.1 Full Depth Excess Soil Quality Standards for Shallow Soils in a Non-Potable Groundwater Condition for residential land use purposes all samples exceeded for Metals [either Lead or Nickel parameters or both]. When evaluated to industrial criteria only BH2 met applicable criteria.

Sample Description	G / S Table 7.1 R/P/I	BH1	BH2	внз	BH4	вн5	вн6
Lead	120 ug/g	88	64	196	294	166	222
Nickel	100 ug/g	279	135	338	469	351	541

R/P/I = residential/parkland/institutional

Sample Description	G / S Table 7.1 I/C/C	BH1	BH2	внз	BH4	вн5	вн6
Lead	120 ug/g	88	64	196	294	166	222
Nickel	270 ug/g	279	135	338	469	351	541

I/C/C = Industrial/Commercial/Community

3.0 CONCLUSIONS

Based on NSSL's preliminary Phase Two ESA and Excess Soils Assessment it appears that the fill material across both properties is impacted by Metals [Lead and Nickel] ranging in depth from surface 0 m to shallow bedrock 0.5 m-0.7 m below ground surface. As the impacted material **does not** meet O. Reg 153/04 standards the soil material must be excavated and removed prior to site redevelopment.

As the material **does not** meet O. Reg 406/19 Residential/Parkland/Institutional nor Industrial/Commercial/Community criteria for re-use purposes, the soil material must be either disposed of at a Ministry of the Environment, Conservation and Parks approved landfill or placed on a re-use site where it may be buried 1.5 metres below the surface and adhere to applicable stratified site conditions standards.

For aid in remedial planning purposes and costing the potential area of impact was estimated at 2,000 m². This area was determined utilizing the size of each parcel lot without the building footprints. The average depth of impacted soil across the site, based on field observations was 0.6 m. Therefore, the total volume of impacted material is approximately 1,400 m³ or 2,940 metric tonnes [MT]. In 2021 to dispose of impacted soil material at Walker's landfill disposal costs were \$45/MT, therefore an estimated cost for disposal purposes, not including excavating and transportation fees, should be considered to commence around \$132,300. NSSL notes the information provided in the above paragraph are estimates only and based on excavating soil material to all property boundaries.

4.0 LIMITATIONS AND USE OF THE REPORT

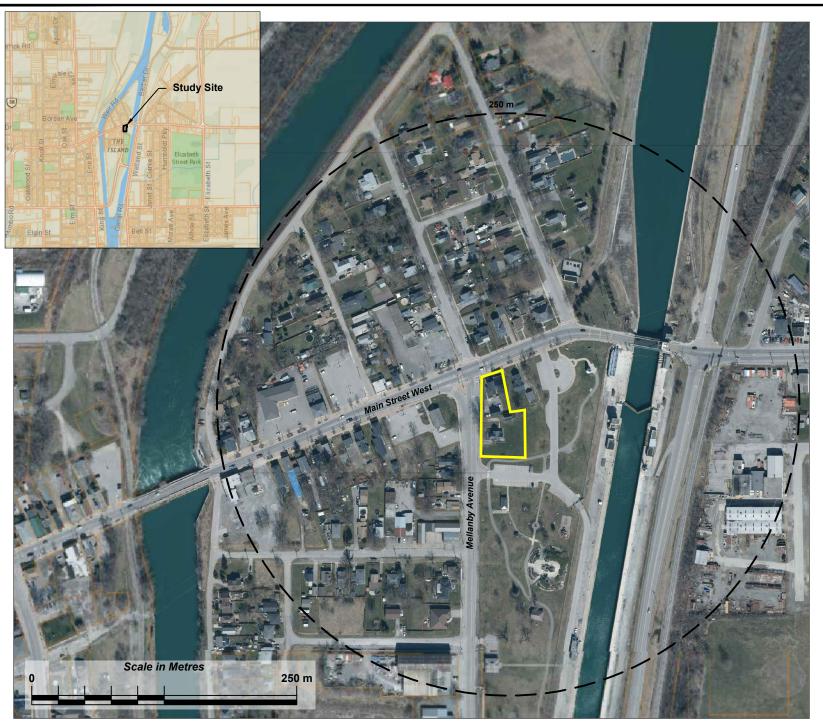
Niagara Soils Solutions Ltd. prepared this Report for the account of ePrime Construction Management and is intended to provide a Phase Two Environmental Site Assessment on the properties at 179 Mellanby Avenue & 56 Main Street West, Port Colborne, Ontario. The material in it reflects Niagara Soils Solutions Ltd.'s best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Should additional parties require reliance on this report, written authorization from NSSL will be required. With respect to third parties, NSSL has no liability or responsibility for losses of any kind whatsoever, including direct or consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The investigation undertaken by NSSL with respect to this report and any conclusions or recommendations made in this report reflect NSSL's judgment based on the site conditions observed at the time of the Site inspection on the date[s] set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this Site and it is based, in part, upon visual observation of the Phase Two Property, subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Phase Two Property, which were unavailable for direct investigation, subsurface locations, which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Niagara Soils Solutions Ltd. has expressed professional judgement in gathering and analysing the information obtained and in the formulation of its conclusions.

NSSL makes no other representation whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.

Yours very truly,

Niagara Soils Solutions Ltd.


John Monkman, P.Eng., FEC President

Jodie Glasier, M.MM, PD-EMA, EP Vice President

fodi Slase

FIGURES

- 1. Site Location Map
- 2. Site Layout and Features
- 3. Potentially Contaminating Activities
- 4. Areas of Potential Environmental Concern
- 5. Sample Locations
- 6. Soil Results
- 7. Excess Soil Results

250 m Study Area

Phase Two ESA Property Boundary

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA & **EXCESS SOILS ASSESSMENT** 179 Mellanby Avenue & 56 Main Street West, Port Colborne, Ontario

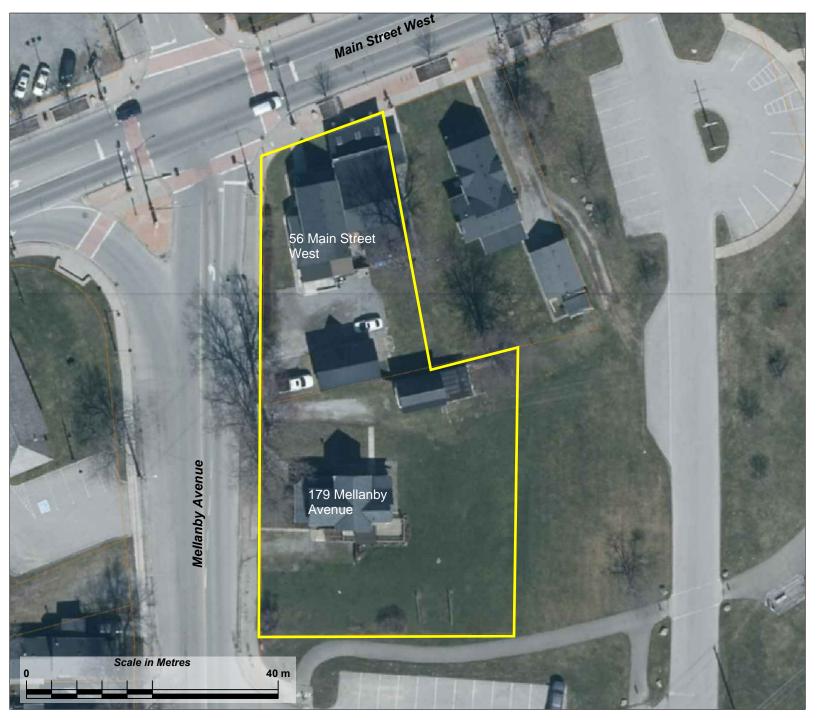
TITLE:

SITE LOCATION PLAN

DRAWN BY:

CHECKED BY:

DATE: November 2022


PROJECT NO:

NS2290-02

SCALE: AS SHOWN

NO:

Figure 1

Phase Two ESA Property Boundary

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA &
EXCESS SOILS ASSESSMENT
179 Mellanby Avenue &
56 Main Street West,
Port Colborne, Ontario

TITLE:

SITE LAYOUT & FEATURES

DRAWN BY:

DN

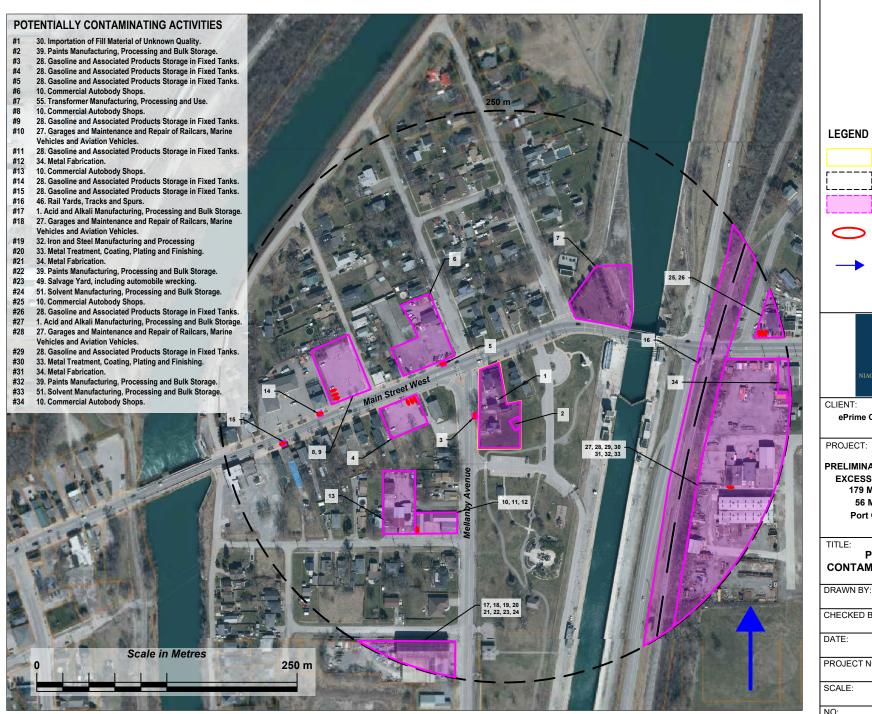
CHECKED BY:

JM

DATE:

November 2022

PROJECT NO:


NS2290-02

SCALE:

AS SHOWN

NO:

Figure 2

Phase Two ESA Property Boundary 250 m Study Area

PCA Areas

Underground Storage Tanks [UST]

Inferred Groundwater Flow Direction

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA & **EXCESS SOILS ASSESSMENT** 179 Mellanby Avenue & 56 Main Street West, Port Colborne, Ontario

TITLE:

POTENTIALLY CONTAMINATING ACTIVITIES

CHECKED BY: DATE:

November 2022

PROJECT NO:

NS2290-02

AS SHOWN

NO:

Figure 3

Phase Two ESA
Property Boundary

APEC Areas

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA &
EXCESS SOILS ASSESSMENT
179 Mellanby Avenue &
56 Main Street West,
Port Colborne, Ontario

TITLE:

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

DRAWN BY:

DN

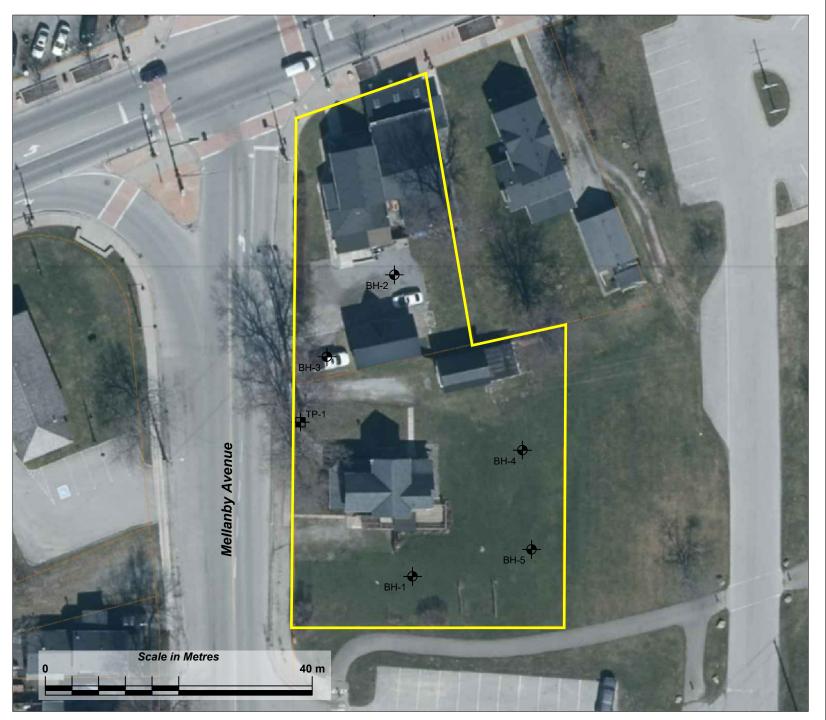
CHECKED BY:

JI

DATE:

November 2022

PROJECT NO:


NS2290-02

SCALE:

AS SHOWN

NO:

Figure 4

Phase Two ESA
Property Boundary

IP-1

Test Pit Location

Borehole Location

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA &
EXCESS SOILS ASSESSMENT
179 Mellanby Avenue &
56 Main Street West,
Port Colborne, Ontario

TITLE:

TEST PIT AND BOREHOLE LOCATION MAP

DRAWN BY:

DN

CHECKED BY:

J

DATE:

November 2022

PROJECT NO:

NS2290-02

SCALE:

AS SHOWN

NO:

Figure 5

Phase Two ESA Property Boundary

Test Pit Location

Borehole Location

Meets Applicable Criteria

Results Compared to O. Reg. 153/04, Table 7 - Shallow Soils, Non-Potable, Residential, Coarse-Criteria

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA & EXCESS SOILS ASSESSMENT 179 Mellanby Avenue & 56 Main Street West, Port Colborne, Ontario

TITLE:

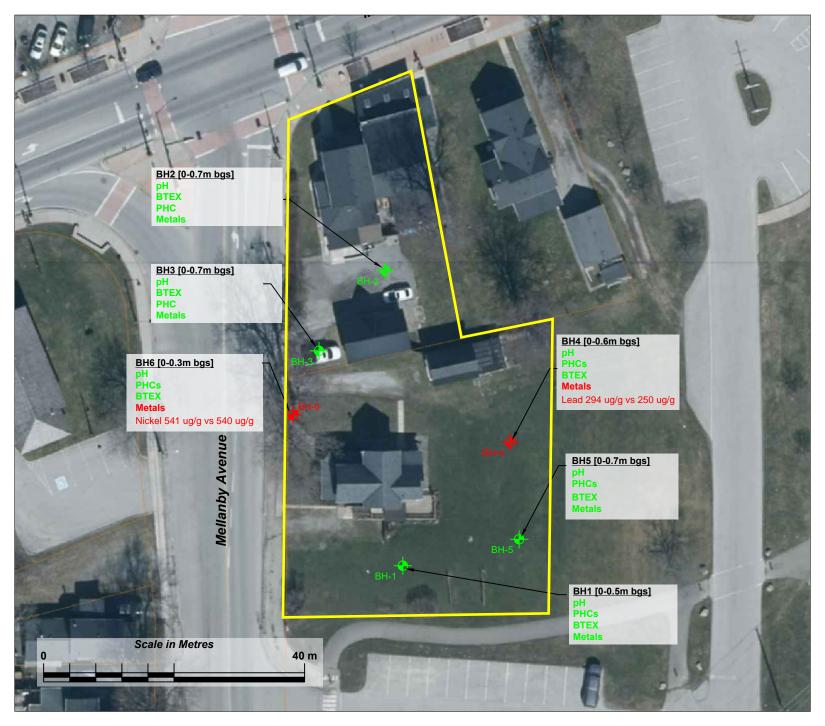
SOIL RESULTS

DRAWN BY:

CHECKED BY:

DATE:

November 2022


PROJECT NO:

NS2290-02 AS SHOWN

SCALE:

NO:

Figure 6

Phase Two ESA
Property Boundary

Test Pit Location

Borehole Location

Meets Applicable Criteria

Exceeds Applicable Criteria

Results Compared to O. Reg. 406/19, Table 7.1 - Full Depth Shallow Soils in a Non-Potable Ground Water condition Volume Independent - I/C/C, coarse

CLIENT:

ePrime Construction Management

PROJECT:

PRELIMINARY PHASE TWO ESA &
EXCESS SOILS ASSESSMENT
179 Mellanby Avenue &
56 Main Street West,
Port Colborne, Ontario

TITLE:

EXCESS SOIL RESULTS

DRAWN BY:

DN

CHECKED BY:

JN

DATE:

November 2022

PROJECT NO:

NS2290-02

SCALE:

AS SHOWN

NO:

Figure 7

APPENDIX A

FIELD LOGS

RECORD OF BOREHOLE: BH/MW-1

DRILLING COMPANY: Elements Geo Corp PROJECT NO.: NT22224

PROJECT: Proposed High Rise Building DRILLING METHOD: 150 mm Solid Stem Augers

LOCATION: 179 Mellanby Ave & 56 Main St W, Port ColborneDRILL RIG: Track Mounted D-70 **CLIENT:** E Prime Construction Management BOREHOLE COORDINATE (UTM): 643101 E, 4751270 N

SHEET 1 of 1

DATE STARTED: Oct 19, 2022 DATE COMPLETED: October 19, 2022

DATUM: Temporary Benchmark

		SOIL PROFILE		SAMPLES			FIELD TESTING		LAB TESTING		
LITHOLOGY PLOT	LITHOLOGY PLOT MOITAINDSSED MOITAINDSSED		TYPE	NUMBER SPT'N' VALUE	RECOVERY (%)	DEPTH SCALE ft / m	SPT (N) 25 50 75 100 HAND PENETROMETER (kPa) 100 200 300 400	COV (ppm / %LEL)	MOISTURE CONTENT (%) 10 20 30 40	WELL INSTALLATION	COMMENTS and ADDITIONAL LAB TESTING
	99.3 0.0 98.8 0.5	Ground Surface 100 mm Topsoil rootlets and organics Sandy Silt Reworked brown some clay trace gravel and organics very loose Bedrock - Cherty Limestone transitioning to Dolostone with depth Run 1 0.48 m - 1.68 m RQD: 0% (Very Poor) Recovery: 28% Highly Fractured Occassional Rubble Zones Run 2 1.68 m - 3.07 m RQD: 0% (Very Poor) Recovery: 44% Highly Fractured Occassional Rubble Zones	RC :	1 2,3, 50/100mm		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	33		•32.7	Concrete Cancrete Concrete Concrete Slot 10 Screen Steel Casing	RQD - Rock Quality Designation 0 - 25% (Very Poor) 25 - 50% (Poor) 50 - 75% (Fair) 75 - 90% (Good) 90 - 100% (Excellent) RQD values possibly affected by core recovery methods.
	3.1	Run 3 3.07 m - 4.44 m RQD: 52% (Fair) Recovery: 100% Highly Fractured Occassional Rubble Zones End of Borehole	RC :	3		11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0				2" Slot	

Groundwater Level Upon Completion: Secondary Groundwater Level:

INITIAL WATER LEVEL: 0.4 mbgs SECONDARY WATER LEVEL: 1.7 mbgs

BOREHOLE CAVE UPON COMPLETION: Open

INITIAL WATER LEVEL DATE: Oct 19, 2022 SECONDARY WATER LEVEL DATE: Oct 27, 2022

LOGGED: D.Nyland COMPILED: D.Neill CHECKED: J.Monkman

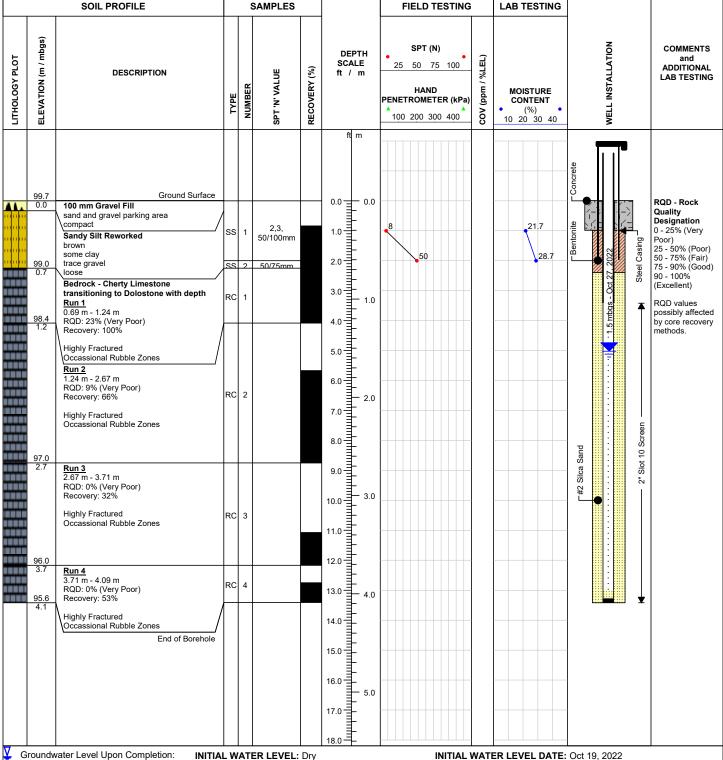
Niagara Testing and Inspection Ltd. 3300 Merrittville Highway, Unit 5 Thorold, Ontario, L2V 4Y6

Note: This borehole log has been prepared for Geotechnical purposes and does not necessarily contain information suitable for an Environmentall assessment of the subsurface conditions. Borehole details as presented, do not constitute a through understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer.

RECORD OF BOREHOLE: BH/MW-2

DRILLING COMPANY: Elements Geo Corp PROJECT NO.: NT22224

PROJECT: Proposed High Rise Building DRILLING METHOD: 150 mm Solid Stem Augers


LOCATION: 179 Mellanby Ave & 56 Main St W, Port ColborneDRILL RIG: Track Mounted D-70 **CLIENT:** E Prime Construction Management

DATE STARTED: Oct 19, 2022

DATE COMPLETED: October 19, 2022

BOREHOLE COORDINATE (UTM): 643103 E, 4751312 N **DATUM:** Temporary Benchmark

SHEET 1 of 1

Groundwater Level Upon Completion: Secondary Groundwater Level:

INITIAL WATER LEVEL: Dry **SECONDARY WATER LEVEL:** 1.5 mbgs

BOREHOLE CAVE UPON COMPLETION: Open

SECONDARY WATER LEVEL DATE: Oct 27, 2022

LOGGED: D.Nyland COMPILED: D.Neill CHECKED: J.Monkman

RECORD OF BOREHOLE: BH-3

PROJECT NO.: NT22224 DRILLING COMPANY: Elements Geo Corp SHEET 1 of 1

PROJECT: Proposed High Rise Building DRILLING METHOD: 150 mm Solid Stem Augers

OD: 150 mm Solid Stem Augers

Mounted D-70

DATE STARTED: Oct 19, 2022

DATE COMPLETED: October 19, 2022

LOCATION: 179 Mellanby Ave & 56 Main St W, Port ColborneDRILL RIG: Track Mounted D-70

CLIENT: E Prime Construction Management

BOREHOLE COORDINATE (UTM): 643093 E, 4751299 N

DATUM: Temporary Benchmark

		SOIL PROFILE		S	AMPLES			FIELD TESTING		LAB TESTING		
LITHOLOGY PLOT	ELEVATION (m / mbgs)	DESCRIPTION	TYPE	NUMBER	SPT 'N' VALUE	RECOVERY (%)	DEPTH SCALE ft / m	SPT (N) 25 50 75 100 HAND PENETROMETER (kPa) 100 200 300 400	COV (ppm / %LEL)	MOISTURE CONTENT (%) 10 20 30 40	WELL INSTALLATION	COMMENTS and ADDITIONAL LAB TESTING
	99.6	Ground Surface					n o ft m					
		Ground Surface 75 mm Gravel Fill sand and gravel parking area compact Sandy Silt Reworked brown some clay trace gravel and organics loose Auger refusal on inferred bedrock. End of Borehole	AU	1	Auger Sample		0.0 ft m 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			19.8	V sbdm 7.0 Mlı	
<mark>∑</mark> G	roundw	rater Level Upon Completion: INITIA	LW.	ATE	R LEVEL:	0.7 m	20.0 = 6.0 nbgs	INITIAL V	VATI	ER LEVEL DATE:	Oct 19, 2022	

Secondary Groundwater Level:

SECONDARY WATER LEVEL: NA

INITIAL WATER LEVEL DATE: Oct 19, 2022 SECONDARY WATER LEVEL DATE: NA

BOREHOLE CAVE UPON COMPLETION: Open

LOGGED: D.Nyland COMPILED: D.Neill CHECKED: J.Monkman

Niagara Testing and Inspection Ltd. 3300 Merrittville Highway, Unit 5 Thorold, Ontario, L2V 4Y6 Note: This borehole log has been prepared for Geotechnical purposes and does not necessarily contain information suitable for an Environmentall assessment of the subsurface conditions. Borehole details as presented, do not constitute a through understanding of all potential conditions present and require interpretative assistance from a qualified Geotechnical Engineer.

RECORD OF BOREHOLE: BH-4

DRILLING COMPANY: Elements Geo Corp PROJECT NO.: NT22224 SHEET 1 of 1

PROJECT: Proposed High Rise Building DRILLING METHOD: 150 mm Solid Stem Augers

DATE STARTED: Oct 19, 2022 LOCATION: 179 Mellanby Ave & 56 Main St W, Port ColborneDRILL RIG: Track Mounted D-70 DATE COMPLETED: October 19, 2022

CLIENT: E Prime Construction Management BOREHOLE COORDINATE (UTM): 643119 E, 4751287 N

DATUM: Temporary Benchmark

		SOIL PROFILE		SAMPLES			FIELD TESTING		LAB TESTING	
LITHOLOGY PLOT	ELEVATION (m / mbgs)	DESCRIPTION	TYPE	SPT 'N' VALUE	RECOVERY (%)	DEPTH SCALE ft / m	SPT (N) 25 50 75 100 HAND PENETROMETER (kPa) 100 200 300 400	COV (ppm / %LEL)	MELL INSTALLATION WELL INSTALLATION (%) 10 20 30 40	COMMENTS and ADDITIONAL LAB TESTING
	99.4	Ground Surface				n ft m		_		
		Ground Surface 100 mm Topsoil rootlets and organics Sandy Silt Reworked brown some clay trace gravel and organics loose Auger refusal on inferred bedrock. End of Borehole	AU 1	Auger Sample		0.0 ft m 0.0 1.0 ft m 0.0 1.			36.9 YI	
						16.0 5.0				
						17.0				
						18.0				
						19.0				
						6.0				
Ŭ G	roundw	rater Level Upon Completion: INITIA	L WAT	ER LEVEL:	0.6 n		INITIAL W	VATI	ER LEVEL DATE: Oct 19, 2022	

Groundwater Level Upon Completion: Secondary Groundwater Level:

INITIAL WATER LEVEL: 0.6 mbgs SECONDARY WATER LEVEL: NA INITIAL WATER LEVEL DATE: Oct 19, 2022 SECONDARY WATER LEVEL DATE: NA

BOREHOLE CAVE UPON COMPLETION: Open

LOGGED: D.Nyland COMPILED: D.Neill CHECKED: J.Monkman

RECORD OF BOREHOLE: BH-5

 PROJECT NO.: NT22224
 DRILLING COMPANY: Elements Geo Corp
 SHEET 1 of 1

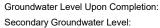
PROJECT: Proposed High Rise Building DRILLING METHOD: 150 mm Solid Stem Augers

METHOD: 150 mm Solid Stem Augers

Track Mounted D-70

DATE STARTED: Oct 19, 2022

DATE COMPLETED: October 19, 2022


LOCATION: 179 Mellanby Ave & 56 Main St W, Port ColborneDRILL RIG: Track Mounted D-70

CLIENT: E Prime Construction Management

BOREHOLE COORDINATE (UTM): 643120 E, 4751276 N

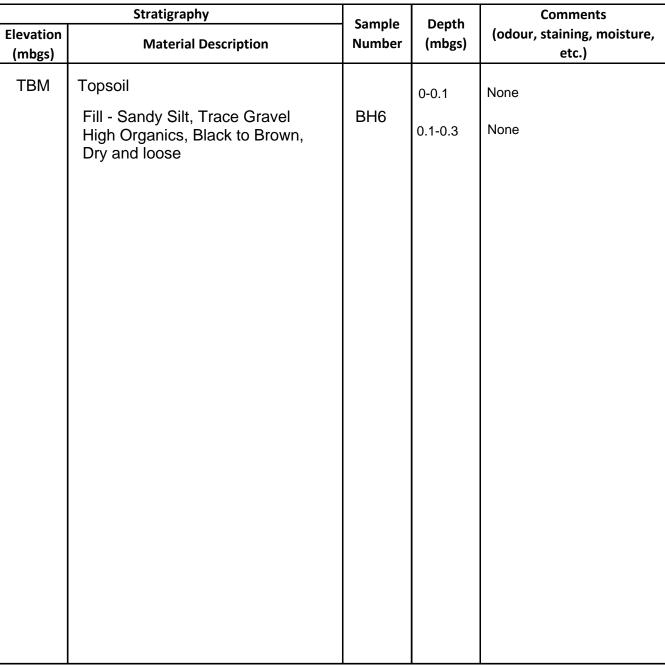
DATUM: Temporary Benchmark

		SOIL PROFILE		S	SAMPLES			FIELD TESTING		LAB TESTING		
ІТНОГОСУ РГОТ	ELEVATION (m / mbgs)	DESCRIPTION	TYPE	NUMBER	SPT 'N' VALUE	RECOVERY (%)	DEPTH SCALE ft / m	SPT (N) 25 50 75 100 HAND PENETROMETER (kPa) 100 200 300 400	COV (ppm / %LEL)	MOISTURE CONTENT (%) 10 20 30 40	WELL INSTALLATION	COMMENTS and ADDITIONAL LAB TESTING
	99.3	Ground Surface					n o ft m					
		Ground Surface 75 mm Topsoil rootlets and organics Sandy Silt Reworked brown some clay trace gravel and organics loose Auger refusal on inferred bedrock. End of Borehole	AU	1	Auger Sample		0.0 ft m 0.0 1.0 1.0 1.0 2.0 1.0 1.0 4.0 1.0 1.0 4.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			33.4	V mbgs V mbgs	
V C		rater Level Upon Completion: INITIA			R LEVEL:	0.7	19.0 6.0	NI	.,	ER LEVEL DATE:	0.140.0000	

INITIAL WATER LEVEL: 0.7 mbgs SECONDARY WATER LEVEL: NA INITIAL WATER LEVEL DATE: Oct 19, 2022 SECONDARY WATER LEVEL DATE: NA

BOREHOLE CAVE UPON COMPLETION: Open

LOGGED: D.Nyland COMPILED: D.Neill CHECKED: J.Monkman


HAND AUGERED LOG SHEET

JOB NUMBER: LOCATION: NS2290-02

DATE: 179 Mellanby &56 West Main Street West

October 19, 2022

TEST PIT LOG: BH6 GSP Coord: 17T 643087 E 4751286 N

Test Pit Size:	1'	by	1'

Equipment Used: Shovel

Notes:

APPENDIX B

CERTIFICATES OF ANALYSIS - SOIL

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 905-407-4030

ATTENTION TO: Jodie Glasier

PROJECT: NS2290-05 AGAT WORK ORDER: 22H960411

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 07, 2022

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

**!---

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22H960411

PROJECT: NS2290-05

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Jodie Glasier SAMPLED BY: DAMEN NYLAND

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

O. Reg. 406/19 Characterization Package - Inorganics (Soil)

DATE RECEIVED: 2022-10-21									DATE REPORTED: 2022-1	1-07
				SCRIPTION: MPLE TYPE: SAMPLED:	BH1 Soil 2022-10-19 12:00	BH2 Soil 2022-10-19 12:00	BH3 Soil 2022-10-19 12:00		BH4 Soil 2022-10-19 12:00	
Parameter	Unit	G / S: A	G / S: B	RDL	4445536	4445550	4445551	RDL	4445552	
Antimony	μg/g	7.5	7.5	0.8	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td>8.0</td><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td>8.0</td><td><0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td>8.0</td><td><0.8[<a]< td=""><td></td></a]<></td></a]<>	8.0	<0.8[<a]< td=""><td></td></a]<>	
Arsenic	μg/g	18	18	1	6[<a]< td=""><td>5[<a]< td=""><td>9[<a]< td=""><td>1</td><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>9[<a]< td=""><td>1</td><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>1</td><td>6[<a]< td=""><td></td></a]<></td></a]<>	1	6[<a]< td=""><td></td></a]<>	
Barium	μg/g	390	390	2.0	123[<a]< td=""><td>92.7[<a]< td=""><td>99.7[<a]< td=""><td>2.0</td><td>211[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	92.7[<a]< td=""><td>99.7[<a]< td=""><td>2.0</td><td>211[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	99.7[<a]< td=""><td>2.0</td><td>211[<a]< td=""><td></td></a]<></td></a]<>	2.0	211[<a]< td=""><td></td></a]<>	
Beryllium	μg/g	4	4	0.4	0.8[<a]< td=""><td>0.6[<a]< td=""><td>1.0[<a]< td=""><td>0.4</td><td>0.9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>1.0[<a]< td=""><td>0.4</td><td>0.9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1.0[<a]< td=""><td>0.4</td><td>0.9[<a]< td=""><td></td></a]<></td></a]<>	0.4	0.9[<a]< td=""><td></td></a]<>	
Boron	μg/g	120	120	5	12[<a]< td=""><td>11[<a]< td=""><td>13[<a]< td=""><td>5</td><td>17[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>13[<a]< td=""><td>5</td><td>17[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>5</td><td>17[<a]< td=""><td></td></a]<></td></a]<>	5	17[<a]< td=""><td></td></a]<>	
Cadmium	μg/g	1.2	1.2	0.5	0.9[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td>0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td>0.8[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.5</td><td>0.8[<a]< td=""><td></td></a]<></td></a]<>	0.5	0.8[<a]< td=""><td></td></a]<>	
Chromium	μg/g	160	160	5	27[<a]< td=""><td>21[<a]< td=""><td>28[<a]< td=""><td>5</td><td>30[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>28[<a]< td=""><td>5</td><td>30[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	28[<a]< td=""><td>5</td><td>30[<a]< td=""><td></td></a]<></td></a]<>	5	30[<a]< td=""><td></td></a]<>	
Cobalt	μg/g	22	22	0.5	10.9[<a]< td=""><td>8.3[<a]< td=""><td>9.4[<a]< td=""><td>0.5</td><td>10.9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	8.3[<a]< td=""><td>9.4[<a]< td=""><td>0.5</td><td>10.9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	9.4[<a]< td=""><td>0.5</td><td>10.9[<a]< td=""><td></td></a]<></td></a]<>	0.5	10.9[<a]< td=""><td></td></a]<>	
Copper	μg/g	140	140	1.0	62.4[<a]< td=""><td>30.5[<a]< td=""><td>40.2[<a]< td=""><td>1.0</td><td>74.4[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	30.5[<a]< td=""><td>40.2[<a]< td=""><td>1.0</td><td>74.4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	40.2[<a]< td=""><td>1.0</td><td>74.4[<a]< td=""><td></td></a]<></td></a]<>	1.0	74.4[<a]< td=""><td></td></a]<>	
Lead	μg/g	120	120	1	88[<a]< td=""><td>64[<a]< td=""><td>196[>B]</td><td>1</td><td>294[>B]</td><td></td></a]<></td></a]<>	64[<a]< td=""><td>196[>B]</td><td>1</td><td>294[>B]</td><td></td></a]<>	196[>B]	1	294[>B]	
Molybdenum	μg/g	6.9	6.9	0.5	0.7[<a]< td=""><td>0.6[<a]< td=""><td>2.1[<a]< td=""><td>0.5</td><td>0.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>2.1[<a]< td=""><td>0.5</td><td>0.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	2.1[<a]< td=""><td>0.5</td><td>0.7[<a]< td=""><td></td></a]<></td></a]<>	0.5	0.7[<a]< td=""><td></td></a]<>	
Nickel	μg/g	100	100	1	279[>B]	135[>B]	338[>B]	10	469[>B]	
Selenium	μg/g	2.4	2.4	8.0	1.2[<a]< td=""><td>1.4[<a]< td=""><td>1.3[<a]< td=""><td>8.0</td><td>1.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	1.4[<a]< td=""><td>1.3[<a]< td=""><td>8.0</td><td>1.7[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1.3[<a]< td=""><td>8.0</td><td>1.7[<a]< td=""><td></td></a]<></td></a]<>	8.0	1.7[<a]< td=""><td></td></a]<>	
Silver	μg/g	20	20	0.5	0.9[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	0.5	<0.5[<a]< td=""><td></td></a]<>	
Thallium	μg/g	1	1	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	0.5	<0.5[<a]< td=""><td></td></a]<>	
Jranium	μg/g	23	23	0.50	0.86[<a]< td=""><td>0.83[<a]< td=""><td>1.01[<a]< td=""><td>0.50</td><td>0.97[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	0.83[<a]< td=""><td>1.01[<a]< td=""><td>0.50</td><td>0.97[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1.01[<a]< td=""><td>0.50</td><td>0.97[<a]< td=""><td></td></a]<></td></a]<>	0.50	0.97[<a]< td=""><td></td></a]<>	
/anadium	μg/g	86	86	0.4	32.4[<a]< td=""><td>32.3[<a]< td=""><td>35.9[<a]< td=""><td>0.4</td><td>38.1[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	32.3[<a]< td=""><td>35.9[<a]< td=""><td>0.4</td><td>38.1[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	35.9[<a]< td=""><td>0.4</td><td>38.1[<a]< td=""><td></td></a]<></td></a]<>	0.4	38.1[<a]< td=""><td></td></a]<>	
Zinc	μg/g	340	340	5	295[<a]< td=""><td>108[<a]< td=""><td>102[<a]< td=""><td>5</td><td>300[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	108[<a]< td=""><td>102[<a]< td=""><td>5</td><td>300[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	102[<a]< td=""><td>5</td><td>300[<a]< td=""><td></td></a]<></td></a]<>	5	300[<a]< td=""><td></td></a]<>	
pH, 2:1 CaCl2 Extraction	pH Units			NA	7.22	7.23	7.29	NA	7.07	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to O. Reg. 406/19 TABLE 7.1: Full Depth Shallow Soils in a Non-Potable Ground Water Condition Volume Independent - R/P/Ins, B Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4445536-4445552 pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

μg/g

μg/g

μg/g

μg/g

μg/g

μg/g

%

Unit

% Recovery

%

25

10

300

2800

55

98

300

2800

2800

Acceptable Limits

60-140

60-140

Certificate of Analysis

<5

<5[<A]

<10[<A]

<50[<A]

<50[<A]

NA[A]

13.9

114

119

<5

<5[<A]

<10[<A]

67[<A]

<50[<A]

NA[A]

21.5

95

99

AGAT WORK ORDER: 22H960411

PROJECT: NS2290-05

O Reg 153(511) - PHCs F1 - F4 (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

F1 (C6 - C10)

F2 (C10 to C16)

F3 (C16 to C34)

F4 (C34 to C50)

Moisture Content

Toluene-d8

Terphenyl

F1 (C6 to C10) minus BTEX

Gravimetric Heavy Hydrocarbons

Surrogate

ATTENTION TO: Jodie Glasier SAMPLED BY:DAMEN NYLAND

<5

<5[<A]

<10[<A]

<50[<A]

<50[<A]

NA[A]

29.5

91

103

			. iveg. 13	3(311)-11	10311-14	(JUII)		
								DATE REPORTED: 2022-11-07
		SAMPLE DE	SCRIPTION:	BH1	BH2	BH3	BH4	
		SA	MPLE TYPE:	Soil	Soil	Soil	Soil	
		DATE	E SAMPLED:	2022-10-19 12:00	2022-10-19 12:00	2022-10-19 12:00	2022-10-19 12:00	
Unit	G / S: A	G / S: B	RDL	4445536	4445550	4445551	4445552	
μg/g	0.02	0.21	0.02	<0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.02[<a]< td=""><td><0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.02[<a]< td=""><td><0.02[<a]< td=""><td></td></a]<></td></a]<>	<0.02[<a]< td=""><td></td></a]<>	
μg/g	0.88	2.3	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
μg/g		2	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<></td></b]<>	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>	
μg/g			0.05	< 0.05	<0.05	<0.05	< 0.05	
μg/g			0.05	< 0.05	<0.05	<0.05	< 0.05	
μg/g	0.12	3.1	0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
	ha\a ha\a ha\a ha\a ha\a	µg/g 0.02 µg/g 0.88 µg/g µg/g µg/g	SAMPLE DE SAI DATE Unit G/S: A G/S: B μg/g 0.02 0.21 μg/g 0.88 2.3 μg/g 2 μg/g μg/g μg/g μg/g	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G/S: A G/S: B RDL μg/g 0.02 0.21 0.02 μg/g 0.88 2.3 0.05 μg/g 2 0.05 μg/g 0.	SAMPLE DESCRIPTION: Soil SAMPLE TYPE: Soil DATE SAMPLED: 2022-10-19 12:00	SAMPLE DESCRIPTION: BH1 Soil Soil Soil DATE SAMPLE TYPE: Soil Soil 12:00 12	$ \begin{array}{ c c c c c c c } & SAMPLE TYPE: & Soil & Soil & Soil \\ \hline DATE SAMPLED: & 2022-10-19 & 2022-10-19 & 2022-10-19 \\ \hline DATE SAMPLED: & 2022-10-19 & 2022-10-19 & 12:00 & 12:00 & 12:00 \\ \hline Unit & G/S: A & G/S: B & RDL & 4445536 & 4445550 & 444551 \\ \hline \mu g/g & 0.02 & 0.21 & 0.02 & <0.02[$	SAMPLE DESCRIPTION: BH1 BH2 BH3 BH4 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil

<5

<5[<A]

<10[<A]

<50[<A]

<50[<A]

NA[A]

24.5

102

118

5

5

10

50

50

50

0.1

AGAT WORK ORDER: 22H960411

PROJECT: NS2290-05

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

ATTENTION TO: Jodie Glasier SAMPLED BY: DAMEN NYLAND

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2022-10-21 DATE REPORTED: 2022-11-07

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to O. Reg. 406/19 TABLE 7.1: Full Depth Shallow Soils in a Non-Potable Ground Water Condition Volume Independent - R/P/Ins, B Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4445536-4445552 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoloj

Exceedance Summary

AGAT WORK ORDER: 22H960411

PROJECT: NS2290-05

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

ATTENTION TO: Jodie Glasier

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4445536	BH1	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	279
4445536	BH1	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	279
4445550	BH2	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	135
4445550	BH2	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	135
4445551	ВН3	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Lead	μg/g	120	196
4445551	ВН3	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	338
4445551	ВН3	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Lead	μg/g	120	196
4445551	BH3	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	338
4445552	BH4	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Lead	μg/g	120	294
4445552	BH4	ON 406/19 T7.1 RP	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	469
4445552	BH4	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Lead	μg/g	120	294
4445552	BH4	ON T7 S RPI CT	O. Reg. 406/19 Characterization Package - Inorganics (Soil)	Nickel	μg/g	100	469

AGAT WORK ORDER: 22H960411

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2290-05 ATTENTION TO: Jodie Glasier SAMPLING SITE: SAMPLED BY:DAMEN NYLAND

			Soi	l Ana	alysis	S								
RPT Date: Nov 07, 2022			DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SP	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1 1 1	ptable nits	Recovery	Acceptable Limits	
	la la					value	Lower	Upper	_	Lower	Upper	_	Lower	Upper
O. Reg. 406/19 Characterizati	on Package - Inorganics	s (Soil)												
Antimony	4445616	<0.8	<0.8	NA	< 0.8	83%	70%	130%	84%	80%	120%	87%	70%	130%
Arsenic	4445616	3	3	NA	< 1	120%	70%	130%	98%	80%	120%	102%	70%	130%
Barium	4445616	58.5	59.8	2.2%	< 2.0	114%	70%	130%	105%	80%	120%	106%	70%	130%
Beryllium	4445616	0.5	0.5	NA	< 0.4	115%	70%	130%	99%	80%	120%	108%	70%	130%
Boron	4445616	7	8	NA	< 5	113%	70%	130%	113%	80%	120%	108%	70%	130%
Cadmium	4445616	<0.5	<0.5	NA	< 0.5	96%	70%	130%	104%	80%	120%	110%	70%	130%
Chromium	4445616	17	17	NA	< 5	119%	70%	130%	108%	80%	120%	112%	70%	130%
Cobalt	4445616	7.1	7.1	0.0%	< 0.5	120%	70%	130%	108%	80%	120%	109%	70%	130%
Copper	4445616	20.9	20.9	0.0%	< 1.0	106%	70%	130%	113%	80%	120%	108%	70%	130%
Lead	4445616	11	11	0.0%	< 1	105%	70%	130%	110%	80%	120%	108%	70%	130%
Molybdenum	4445616	<0.5	<0.5	NA	< 0.5	115%	70%	130%	111%	80%	120%	114%	70%	130%
Nickel	4445616	15	15	0.0%	< 1	114%	70%	130%	107%	80%	120%	106%	70%	130%
Selenium	4445616	<0.8	<0.8	NA	< 0.8	77%	70%	130%	102%	80%	120%	105%	70%	130%
Silver	4445616	<0.5	<0.5	NA	< 0.5	106%	70%	130%	102%	80%	120%	103%	70%	130%
Thallium	4445616	<0.5	<0.5	NA	< 0.5	115%	70%	130%	102%	80%	120%	104%	70%	130%
Uranium	4445616	0.54	0.54	NA	< 0.50	119%	70%	130%	110%	80%	120%	113%	70%	130%
Vanadium	4445616	27.3	27.5	0.7%	< 0.4	128%	70%	130%	104%	80%	120%	107%	70%	130%
Zinc	4445616	54	54	0.0%	< 5	114%	70%	130%	110%	80%	120%	112%	70%	130%
pH, 2:1 CaCl2 Extraction	4445552 4445552	7.07	7.22	2.1%	NA	99%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

manjot Bhells AMANJOT BHELD CHEMIST

4443322

4443322

F4 (C34 to C50)

<50

<50

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD AGAT WORK ORDER: 22H960411 PROJECT: NS2290-05 ATTENTION TO: Jodie Glasier

SAMPLING SITE: SAMPLED BY: DAMEN NYLAND Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Nov 07, 2022 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Massurad Blank Limits Dup #2 **PARAMETER** Batch Dup #1 RPD Recovery Recovery Value Lower Upper Lower | Upper Lower Upper O. Reg. 153(511) - PHCs F1 - F4 (Soil) < 0.02 60% 140% Benzene 4446323 < 0.02 < 0.02 103% 60% 140% 99% 140% 94% NA 60% 140% Toluene 4446323 < 0.05 < 0.05 NA < 0.05 92% 60% 140% 90% 60% 140% 90% 60% Ethylbenzene 4446323 < 0.05 < 0.05 NA < 0.05 102% 60% 140% 104% 60% 140% 100% 60% 140% m & p-Xylene 4446323 < 0.05 < 0.05 NA < 0.05 95% 60% 140% 92% 60% 140% 119% 60% 140% o-Xylene 4446323 < 0.05 < 0.05 NA < 0.05 91% 60% 140% 98% 60% 140% 86% 60% 140% F1 (C6 - C10) 4446323 <5 <5 60% 140% 90% 60% 140% 91% 60% 140% NA < 5 NA F2 (C10 to C16) 4443322 <10 <10 NA < 10 94% 60% 140% 74% 60% 140% 62% 60% 140% F3 (C16 to C34)

NA Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

NA

< 50

< 50

102%

97%

60%

60%

140%

140%

66%

106%

60%

60%

140%

140%

68%

102%

60%

140%

60% 140%

<50

<50

Certified By:

NPoprikolo

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

AGAT WORK ORDER: 22H960411

PROJECT: NS2290-05

ATTENTION TO: Jodie Glasier

SAMPLING SITE: SAMPLED BY:DAMEN NYLAND

SAMPLING SHE:		SAMPLED BY: DAMEN NYLAND								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis			•							
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE							

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2290-05

SAMPLING SITE:

AGAT WORK ORDER: 22H960411

ATTENTION TO: Jodie Glasier

SAMPLED BY:DAMEN NYLAND

······ -···· -···		9 === =	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

5835 Coopers Avenue Missistaugh, Ontino L4Z 1Y2 Ph 905 712 5100 Fax 905 712 5122 webcarth.acatlobs.com Laboratory Use Only
Work Order #. 8 A 9654

Obelia of Quetody Decord										oler Quantity ival Tempera		13.0	0 16	.2	5.3
Chain of Custody Record Report Information: Company: NIAGARA SOILS SOLUTION		Orlnking Water sample	Regulatory Re	equirements:	ater const	med by hu	mans)		Cus	stody Seal In	tact:	TCE		l □No	□N/A
Contact: JODIE GLASIER Address: 3300 MERRITTVILLE HIC UNIT 5	GHWAY		Regulation 153/0	Excess Soils R406 Table 1 Indicate One		ewer Use]Sanitary Region		m		naround Jular TAT	Time	E (TAT) F	·		
Phone: Reports to be sent to: 1. Email: 2. Email: 289-407-6341 JGLASIER@NSSL.CA JMONKMAN@NSSL.CA	Fax:		☐ Res/Park ☐ Agriculture Soil Texture (Check One) ☐ Coarse ☐ Fine	Regulation 558			(PWQO)		Rus	h TAT (Rush:	iss	2 Bu Days			Next Business Day
Project Information: Project: NS2286-05 VS22 Site Location: 4500 Mentrope Road	90-09	5	Is this submis		Reportific		eline o	is	F	Pleas	se provi clusive	red (Rush S ide prior no e of weeker lysis, pleas	otification ands and st	for rush tatutory	TAT holidays
Sampled By: AGAT Quote #: Invoice Information: Company: Contact: Address: Email:		be billed full pince for analysis.	Sample Matrix B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		Field Filtered - Metals, Hg, CrVI, DOC	O Reg 15	if required □ Yes □ No		oosal Characterization TCLP. Gr.C Das Das Doos □ ABNs □ B(a)P □ PCBs	s SPLP Rainwater Leach tinh □vocs □svocs characterization Package	Metais, BTEX, F1-F4				ezardous or High Concontration (V/N)
Sample Identification RHI BH2 BH3 BH9	Date Sampled	Time Sampled Conta		onemonto /	Merals & In		Analyze F4G PAHs	PCBs	Landfill Disposal	Excess Soils SPLP- I Meta	PH, ICPMS				Potentally Ha
Saegiles Hidnes / yr Ey Petic Name and Signs:		PM AM PM AM PM AM PM	Samotos	in solus (for flore sign)				tate	, 22) Time 2'.(214	19	200	T21 5

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6

905-407-4030 ATTENTION TO: Jodie Glasier

PROJECT: NS2290-02

AGAT WORK ORDER: 22H960416

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 07, 2022

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes		
1		_

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

ATTENTION TO: Jodie Glasier SAMPLED BY:DAMEN NYLAND

OAMI LING OH L.							OAMI LED DI	DAMEN IN LAND
			O. Reg.	153(511)	- Metals (Ind	luding H	ydrides) (Soil)	
DATE RECEIVED: 2022-10-21								DATE REPORTED: 2022-11-07
			SA	SCRIPTION: MPLE TYPE: E SAMPLED:	BH5 Soil 2022-10-19 12:00		BH6 Soil 2022-10-19 12:00	
Parameter	Unit	G / S: A	G / S: B	RDL	4445556	RDL	4445571	
Antimony	μg/g	7.5	7.5	0.8	<0.8[<a]< td=""><td>0.8</td><td><0.8[<a]< td=""><td></td></a]<></td></a]<>	0.8	<0.8[<a]< td=""><td></td></a]<>	
Arsenic	μg/g	18	18	1	6[<a]< td=""><td>1</td><td>10[<a]< td=""><td></td></a]<></td></a]<>	1	10[<a]< td=""><td></td></a]<>	
Barium	μg/g	390	390	2.0	154[<a]< td=""><td>2.0</td><td>118[<a]< td=""><td></td></a]<></td></a]<>	2.0	118[<a]< td=""><td></td></a]<>	
Beryllium	μg/g	4	4	0.4	1.3[<a]< td=""><td>0.4</td><td>0.9[<a]< td=""><td></td></a]<></td></a]<>	0.4	0.9[<a]< td=""><td></td></a]<>	
Boron	μg/g	120	120	5	23[<a]< td=""><td>5</td><td>14[<a]< td=""><td></td></a]<></td></a]<>	5	14[<a]< td=""><td></td></a]<>	
Cadmium	μg/g	1.2	1.2	0.5	0.5[<a]< td=""><td>0.5</td><td>0.9[<a]< td=""><td></td></a]<></td></a]<>	0.5	0.9[<a]< td=""><td></td></a]<>	
Chromium	μg/g	160	160	5	37[<a]< td=""><td>5</td><td>30[<a]< td=""><td></td></a]<></td></a]<>	5	30[<a]< td=""><td></td></a]<>	
Cobalt	μg/g	22	22	0.5	9.1[<a]< td=""><td>0.5</td><td>16.9[<a]< td=""><td></td></a]<></td></a]<>	0.5	16.9[<a]< td=""><td></td></a]<>	
Copper	μg/g	140	140	1.0	47.2[<a]< td=""><td>1.0</td><td>86.3[<a]< td=""><td></td></a]<></td></a]<>	1.0	86.3[<a]< td=""><td></td></a]<>	
Lead	μg/g	120	120	1	166[>B]	1	222[>B]	
Molybdenum	μg/g	6.9	6.9	0.5	0.6[<a]< td=""><td>0.5</td><td>1.1[<a]< td=""><td></td></a]<></td></a]<>	0.5	1.1[<a]< td=""><td></td></a]<>	
Nickel	μg/g	100	100	1	351[>B]	10	541[>B]	
Selenium	μg/g	2.4	2.4	8.0	1.0[<a]< td=""><td>0.8</td><td>1.9[<a]< td=""><td></td></a]<></td></a]<>	0.8	1.9[<a]< td=""><td></td></a]<>	
Silver	μg/g	20	20	0.5	<0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	0.5	<0.5[<a]< td=""><td></td></a]<>	
Thallium	μg/g	1	1	0.5	<0.5[<a]< td=""><td>0.5</td><td><0.5[<a]< td=""><td></td></a]<></td></a]<>	0.5	<0.5[<a]< td=""><td></td></a]<>	
Uranium	μg/g	23	23	0.50	1.05[<a]< td=""><td>0.50</td><td>0.96[<a]< td=""><td></td></a]<></td></a]<>	0.50	0.96[<a]< td=""><td></td></a]<>	
Vanadium	μg/g	86	86	0.4	52.6[<a]< td=""><td>0.4</td><td>36.6[<a]< td=""><td></td></a]<></td></a]<>	0.4	36.6[<a]< td=""><td></td></a]<>	
Zinc	μg/g	340	340	5	205[<a]< td=""><td>5</td><td>203[<a]< td=""><td></td></a]<></td></a]<>	5	203[<a]< td=""><td></td></a]<>	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils, B Refers to O. Reg. 406/19 TABLE 7.1: Full Depth Shallow Soils in a Non-Potable Ground Water Condition Volume Independent -

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4445571 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED OF CHEMIST O

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

ATTENTION TO: Jodie Glasier SAMPLED BY:DAMEN NYLAND

O. Reg. 153(511) - ORPs (Soil)												
DATE RECEIVED: 2022-10-21 DATE REPORTED: 2022-11-07												
	SAMPLE DESCRIPTION: BH5 BH6											
		SAM	PLE TYPE:	Soil	Soil							
		DATE	SAMPLED:	2022-10-19 12:00	2022-10-19 12:00							
Parameter	Unit	G/S	RDL	4445556	4445571							
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.36	7.11							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

444556-4445571 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). Analysis performed at AGAT Toronto (unless marked by *)

MANUAL MENTAL PROPERTY OF THE PROPERTY OF THE

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

ATTENTION TO: Jodie Glasier SAMPLED BY:DAMEN NYLAND

OANII LING GITL.					GAMI ELD DI DAMEN NI EAND								
			C). Reg. 15	3(511) - PH	HCs F1 - F4	(Soil)						
DATE RECEIVED: 2022-10-21							DATE REPORTED: 2022-11-07						
			SA	SCRIPTION: MPLE TYPE: E SAMPLED:	BH5 Soil 2022-10-19 12:00	BH6 Soil 2022-10-19 12:00							
Parameter	Unit	G / S: A	G / S: B	RDL	4445556	4445571							
Benzene	μg/g	0.21	0.02	0.02	<0.02[<b]< td=""><td><0.02[<b]< td=""><td></td></b]<></td></b]<>	<0.02[<b]< td=""><td></td></b]<>							
Toluene	μg/g	2.3	0.88	0.05	<0.05[<b]< td=""><td><0.05[<b]< td=""><td></td></b]<></td></b]<>	<0.05[<b]< td=""><td></td></b]<>							
Ethylbenzene	μg/g	2		0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>							
m & p-Xylene	μg/g			0.05	< 0.05	0.12							
o-Xylene	μg/g			0.05	<0.05	< 0.05							
Xylenes (Total)	μg/g	3.1	0.12	0.05	<0.05[<b]< td=""><td>0.12[B]</td><td></td></b]<>	0.12[B]							
F1 (C6 - C10)	μg/g			5	<5	<5							
F1 (C6 to C10) minus BTEX	μg/g	55	25	5	<5[<b]< td=""><td><5[<b]< td=""><td></td></b]<></td></b]<>	<5[<b]< td=""><td></td></b]<>							
F2 (C10 to C16)	μg/g	98	10	10	<10[<b]< td=""><td><10[<b]< td=""><td></td></b]<></td></b]<>	<10[<b]< td=""><td></td></b]<>							
F3 (C16 to C34)	μg/g	300	300	50	<50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<>	<50[<a]< td=""><td></td></a]<>							
F4 (C34 to C50)	μg/g	2800	2800	50	<50[<a]< td=""><td><50[<a]< td=""><td></td></a]<></td></a]<>	<50[<a]< td=""><td></td></a]<>							
Gravimetric Heavy Hydrocarbons	μg/g	2800		50	NA[B]	NA[B]							
Moisture Content	%			0.1	26.7	24.2							
Surrogate	Unit	Α	cceptable Limi	its									
Toluene-d8	% Recovery		60-140		104	100							
Terphenyl	%		60-140		87	96							

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:

ATTENTION TO: Jodie Glasier SAMPLED BY: DAMEN NYLAND

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2022-10-21 DATE REPORTED: 2022-11-07

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils, B Refers to O. Reg. 406/19 TABLE 7.1: Full Depth Shallow Soils in a Non-Potable Ground Water Condition Volume Independent -

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4445556-4445571 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

ATTENTION TO: Jodie Glasier

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4445556	BH5	ON 406/19 T7.1 RP	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Lead	μg/g	120	166
4445556	BH5	ON 406/19 T7.1 RP	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Nickel	μg/g	100	351
4445556	BH5	ON T7 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Lead	μg/g	120	166
4445556	BH5	ON T7 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Nickel	μg/g	100	351
4445571	BH6	ON 406/19 T7.1 RP	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Lead	μg/g	120	222
4445571	BH6	ON 406/19 T7.1 RP	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Nickel	μg/g	100	541
4445571	BH6	ON T7 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Lead	μg/g	120	222
4445571	BH6	ON T7 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Nickel	μg/g	100	541

AGAT WORK ORDER: 22H960416

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2290-02 ATTENTION TO: Jodie Glasier SAMPLING SITE: SAMPLED BY:DAMEN NYLAND

Soil Analysis															
RPT Date: Nov 07, 2022			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		ptable nits
		la la	-				value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Includ	ing Hydride	s) (Soil)													
Antimony	4454235		<0.8	<0.8	NA	< 0.8	85%	70%	130%	87%	80%	120%	74%	70%	130%
Arsenic	4454235		3	3	NA	< 1	127%	70%	130%	107%	80%	120%	109%	70%	130%
Barium	4454235		29.7	30.9	4.0%	< 2.0	109%	70%	130%	99%	80%	120%	107%	70%	130%
Beryllium	4454235		< 0.4	< 0.4	NA	< 0.4	103%	70%	130%	96%	80%	120%	107%	70%	130%
Boron	4454235		<5	<5	NA	< 5	101%	70%	130%	102%	80%	120%	104%	70%	130%
Cadmium	4454235		<0.5	<0.5	NA	< 0.5	94%	70%	130%	105%	80%	120%	114%	70%	130%
Chromium	4454235		11	11	NA	< 5	123%	70%	130%	108%	80%	120%	117%	70%	130%
Cobalt	4454235		4.0	4.2	4.9%	< 0.5	122%	70%	130%	109%	80%	120%	116%	70%	130%
Copper	4454235		9.1	9.2	1.1%	< 1.0	109%	70%	130%	111%	80%	120%	114%	70%	130%
Lead	4454235		12	13	8.0%	< 1	113%	70%	130%	109%	80%	120%	113%	70%	130%
Molybdenum	4454235		<0.5	<0.5	NA	< 0.5	114%	70%	130%	110%	80%	120%	118%	70%	130%
Nickel	4454235		8	8	0.0%	< 1	120%	70%	130%	107%	80%	120%	113%	70%	130%
Selenium	4454235		<0.8	<0.8	NA	< 0.8	101%	70%	130%	109%	80%	120%	117%	70%	130%
Silver	4454235		<0.5	< 0.5	NA	< 0.5	109%	70%	130%	111%	80%	120%	108%	70%	130%
Thallium	4454235		<0.5	<0.5	NA	< 0.5	121%	70%	130%	100%	80%	120%	104%	70%	130%
Uranium	4454235		<0.50	<0.50	NA	< 0.50	123%	70%	130%	106%	80%	120%	112%	70%	130%
Vanadium	4454235		18.6	19.1	2.7%	< 0.4	123%	70%	130%	108%	80%	120%	119%	70%	130%
Zinc	4454235		39	39	0.0%	< 5	124%	70%	130%	115%	80%	120%	125%	70%	130%
O. Reg. 153(511) - ORPs (Soil)															
pH, 2:1 CaCl2 Extraction	4445376		7.25	7.32	1.0%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02 ATTENTION TO: Jodie Glasier SAMPLING SITE: SAMPLED BY:DAMEN NYLAND

		SAMI ELD DI DAMEN NI LAND													
		Trac	e Or	ganio	s Ar	nalys	is								
RPT Date: Nov 07, 2022		DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	KE		
Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank		Acceptable Limits		Recovery	Limite		Recovery	Lin	eptable mits	
						value	Lower	Upper		Lower	Upper		Lower	Upper	
Soil)															
4445423		< 0.02	< 0.02	NA	< 0.02	95%	60%	140%	95%	60%	140%	100%	60%	140%	
4445423		< 0.05	< 0.05	NA	< 0.05	99%	60%	140%	91%	60%	140%	95%	60%	140%	
4445423		0.36	0.41	13.3%	< 0.05	101%	60%	140%	91%	60%	140%	96%	60%	140%	
4445423		1.29	1.44	11.3%	< 0.05	100%	60%	140%	95%	60%	140%	96%	60%	140%	
4445423		0.59	0.67	12.2%	< 0.05	100%	60%	140%	90%	60%	140%	89%	60%	140%	
4445423		68	74	8.3%	< 5	83%	60%	140%	83%	60%	140%	87%	60%	140%	
4453346		<10	<10	NA	< 10	101%	60%	140%	103%	60%	140%	81%	60%	140%	
4453346		<50	<50	NA	< 50	105%	60%	140%	83%	60%	140%	68%	60%	140%	
4453346		<50	<50	NA	< 50	77%	60%	140%	87%	60%	140%	79%	60%	140%	
	Soil) 4445423 4445423 4445423 4445423 4445423 4445423 4445423 4453346 4453346	Soil) 4445423 4445423 4445423 4445423 4445423 4445423 44453346 4453346	Soil) 4445423 <0.02 4445423 <0.05 4445423 1.29 4445423 0.59 4445423 68 4445423 68 4453346 <10 4453346 <50	Batch Sample Id Dup #1 Dup #2 Soil) 4445423 <0.02	Batch Sample Id Dup #1 Dup #2 RPD Soil) 4445423 <0.02	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD Method Blank Soil) 4445423 <0.02	DUPLICATE	Duplicate Duplicate Reference Make Reference Reference Reference Make Reference Reference	DUPLICATE	DUPLICATE	DUPLICATE	DUPLICATE	DUPLICATE	DUPLICATE	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

ATTENTION TO: Jodie Glasier

SAMPLING SITE: SAMPLED BY:DAMEN NYLAND

SAMPLING SHE:		SAMPLED DI DAMEN NI LAND									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Soil Analysis			•								
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS								
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE								

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

AGAT WORK ORDER: 22H960416

PROJECT: NS2290-02

ATTENTION TO: Jodie Glasier

SAMPLING SITE:

SAMPLED BY:DAMEN NYLAND

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis	•							
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS					
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID					
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					

5885 Coopers Avenue Mississauga, Ontario 1,47 T/2 Pir 905 712 5100 Fax 905 712 5122 we beauth agathabs com-

Laboratory Use (Only	1/2011	10
Work Order #:	2H 7	604	16
Cooler Quantity:	C001	en	T
Arrival Temperatures:	4.9	5.21	49
	3.21	2.81	3.5.
Custody Seal Intact:	□Yes	□No	□N/A
Notes: COO	tee		

												_		ooler Qu		-	1	1	CAL		11/	7
Chain of Custody Record If this is a Drinking Water sample, please						e use Drinking Water Chain of Custody Form (potable water consumed by humans)							Ar	rival Te	mperat	ures:	-	3. 5	7	2.8	13.	1=.
Report Information: Company: NIAGARA SOILS SOLUTIONS LTD. Contact: JODIE GLASIER					Reg	Regulatory Requirements:						Custody Seal Intact: Yes No N/A										
Contact: JODIE GLASIER					_ Ta	egulation 153/04 able	Table Torgeton	106	Sewer Use Sanitary Storm				Destate TAT									
Phone: Reports to be sent to:	289-407-6341	Fax:				Hes/Park Agriculture	Regulation 558		Prov. Water Quality Objectives (PWQO)			Rush TAT (Rush Surcharges Apply)										
1 Email:	JGLASIER@NSSL,CA JMONKMAN@NSSL.CA				TE.	fexture raisek One) ¶Coarse ∏Fine	ССМЕ	1	Oth	er Indicate 0	E		4	SA OI	R Date	SS Regui	1	2 Bus Days tush Si			Next Bu Day Apply):	siness
Project Information: Project: NS 2290 - 02 Site Location: ASAMUNIC AND				Re	Is this submission for a Record of Site Condition?			Report Guideline on Certificate of Analysis Yes No					OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For *Same Day* analysis, please contact your AGAT CPM									
AGAT Quote #: 67368EB PO: Please note: If quotation number is not provided, cherit will be billed full price for analysis.			Sample Matrix Legend B Biota GW Ground Water			Field Filtered - Metals, Hg, CrVI, DOC	0, Reg 153			0. RC 558	3 1	Package Package			8				ciniation (Y/N)			
Company: Contact: Address: Email:	Company: Contact: Address:		O P S SD SW	O Oil P Paint S Soil SD Sediment			s & Inorganics	s · □ CrVI. □ Hg, □ HWSB F1.F4 PHCs	Analyze F4G if required ☐ Yes PAHs		Il Disposal Characterizatio	Soils SPLP Rainwater Leach	cterization	Pri, remas metals, bled, r.t.s. Sait, EC/SAB	OHG / BTEX	letals by I	Ho			ally Hazardous or High Conc		
Samp	ple Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		iments/ Instructions	Y/N	Metals	Metals - BTEX, F1	Analyz	PCBs	Landfill	Excess epi p. R				Z				Potent
<u> </u>	3H5 BH6	10-19	AN	2 2	S S											(t) (t)	x	x	× ×			
			An Ph An Ph	2	S										N N	(7)						
			PA AA PA AA PA	4	3											Ť						
			AN PN AN PN	A		1-6																
			AN PN AN PN	A																		
Samples Reinfuglind By (Print Nage of Syrt): Samples Reinfuglind By (Print Nage of Surf): Samples Reinfugungd by (Print Nage of Surf): Tune Trans			SSp	Sand State	MANSA	Sh	lin	D	-8	D /	o - 2) Tien	2:0	Sp	1	Pa	age	of	CT2	1 5		
Warner Nylad					Samples Revened Grill	Thirt fraulte end Gignit	Sta	la est		5_	Date		tim	0								